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Challenges and opportunities 
in bioimage analysis

Xinyang Li, Yuanlong Zhang, Jiamin Wu & Qionghai Dai

Advanced imaging techniques provide holistic 
observations of complicated biological 
phenomena across multiple scales while 
posing great challenges to data analysis. We 
summarize recent advances and trends in 
bioimage analysis, discuss current challenges 
toward better applicability, and envisage new 
possibilities.

“More is different.”1 As indicated by Philip W. Anderson about 50 
years ago, the interactions of large-scale elementary units may cause 
new properties to emerge that cannot be explained by the basic laws 
governing the elementary unit. Biology is a typical discipline exhib-
iting such a nature of hierarchical structures with heterogenous 
properties across multiple spatial and temporal scales, ranging 
from genes, proteins, organelles and cells to tissues, organs and 
whole bodies. Most of these scales have been covered by advanced 
instruments, such as sequencing technology, cryo-electron micros-
copy, super-resolution fluorescence microscopy and magnetic reso-
nance imaging, leading to many discoveries in the life sciences. 
However, there is a long-standing gap in mesoscale imaging, which 
involves linking information at the cell, tissue and organ scales.  
To fill this niche, the data throughput of fluorescence microscopy 
has increased by orders of magnitude in the past decade, opening a 
new horizon for investigating large-scale intracellular and intercel-
lular interactions in various pathological or physiological states2–6. 
Indeed, scientists from different areas have invested collaborative 
efforts to push forward this frontier for diverse applications, such as 
whole-brain vascular topology7, molecular heterogeneity of synaptic 
morphology8 and cell lineages during embryogenesis9. Therefore, 
learning how to process, analyze and understand large-scale imag-
ing data efficiently to catalyze biological discoveries has become 
increasingly important.

Advances and trends
In the 2010s, deep convolutional networks demonstrated their domi-
nance in computer vision for the first time10. Since then, deep learning 
has become a mainstay in contemporary image analysis as a result of 
its key advantages in both efficiency and performance. This revolu-
tion rapidly spread to the field of microscopy, and various intelligent 
methods have been proposed for different biological applications 
and imaging modalities to solve the problems of image enhancement, 
classification, segmentation, cell tracking and others with orders of 
magnitude improvement in the processing speed, which is vital for 
large-scale imaging data11,12. Below we discuss important trends and 
advances for deep learning-based image analysis.

Self-supervised and unsupervised learning. Supervised learning 
has long been and is still the primary paradigm of deep-learning-based 
image analysis. With enough training images paired with ground truth 
at hand, it is not difficult to construct a model with good performance 
on a specific image analysis task. However, ground-truth data can be 
difficult or sometimes even impossible to obtain in microscopy, which 
has become an inevitable limitation of supervised learning. In recent 
years, the most impressive trend in image analysis is the transition from 
conventional supervised learning to self-supervised and unsupervised 
learning (Fig. 1). Using these new training mechanisms, networks can 
learn to perform specific tasks without requiring any paired ground 
truth for training13–15. Moreover, a typical feature of optical micros-
copy is the great data variability between different model organisms, 
experimental conditions and laboratories. It is a common problem that 
pretrained models cannot be applied to new data and may generate 
artifacts. Self-supervised and unsupervised learning provide a better 
solution to train a customized model for a specific group of data. For 
large-scale image analysis, self-supervised and unsupervised methods 
have an inherent advantage because the raw data themselves are a 
large-scale training set, paving the way for training large models with 
better generalization.

Vision transformers. Network architecture also continues to undergo 
remarkable updates to go beyond classical convolutional networks. 
Vision transformers, a new type of architecture mainly using the 
self-attention mechanism to extract intrinsic features, have achieved 
state-of-the-art performance on a variety of computer vision tasks16,17. 
Their capability to capture long-range dependencies can overcome the 
local receptive field of convolutional kernels, making them better at 
integrating global information. Just as in the success that transformers 
have attained in predicting genetic variants from long DNA sequences18, 
there is great potential to discover new phenomena by exploiting 
long-range spatiotemporal correlations in large-scale imaging data. 
For example, in neural functional imaging, transformers can help to 
reveal the causality between two distant events in long-term record-
ing and characterize the relationship between two faraway neurons 
in mesoscale imaging.

Reinforcement learning. As a computational model rooted in the 
decision-making process of humans and other animals, reinforcement 
learning is widely used to build intelligent agents with the ability to inter-
act with the environment by rewarding desired behaviors and punishing 
incorrect ones. Combined with image analysis, reinforcement learning 
promises to uncover hidden patterns in large-scale imaging data. For 
example, by treating the migrating cell as an agent and the other cells as 
the environment, deep reinforcement learning can infer the mechanism 
of cell migration during embryo development19. Reinforcement learning 
is also suitable for deciphering the neural mechanisms of animal behav-
iors. If we have a large amount of neural imaging data and synchronize 
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maintain this reliability as much as possible. For low-level vision 
tasks aimed at improving image quality (for example, denoising, 
super-resolution reconstruction or deblurring), incorporating the phys-
ics of image formation into the processing framework can increase the 
confidence level of the results21. It has been broadly verified that better  
modeling of the imaging process, such as optical aberrations22 and 
scattering23, leads to better performance, especially for computational 
imaging methods.

Challenges toward better applicability
Although impressive achievements have been made in bioimage analy-
sis, there are still some issues that hinder the applicability of these tools 
in optical microscopy. Here we summarize several key points and hope 
that concerted efforts could be made by the research community to 
resolve these issues.

Standard and metrics. Publishing standard validation datasets and 
setting corresponding performance metrics can promote the rigor-
ous development of bioimage analysis methods. Since images from 
different imaging modalities vary greatly, a specific dataset should 
be archived for each modality. These validation datasets must be 

visual input and sensory stimuli, it is possible to build cognitive models 
in a data-driven manner using reinforcement learning. Such a paradigm 
can be extended to diverse fields to extract huge amounts of biological 
discovery through the screening of large-scale imaging data during dif-
ferent pathological or physiological states in different organs. Another 
success of deep reinforcement learning is to train intelligent agents to 
complete various challenging tasks, such as playing video games20. This 
inspires us because by designing the reward properly and learning from 
a large amount of experiment data iteratively, a microscope can learn to 
interact with the sample, complete a given imaging task with optimal 
parameters, and discover interesting phenomena automatically.

Physics-informed methods. Imaging is a rigorous optical process that 
needs to be reliable enough to support scientific discoveries. In fact, 
optical imaging is a means of quantitative measurement. The intensity 
of each pixel has a specific biophysical and biochemical meaning, 
such as ion concentration in calcium imaging, membrane potential 
in voltage imaging, and gene expression in spatial transcriptomics. 
Preserving the quantitative property in processed images is therefore 
critical for researchers to decode underlying biological phenomena.  
The analysis of imaging data, especially image processing, should 
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Fig. 1 | Supervised and self-supervised or unsupervised learning for 
image analysis. In supervised training (top left), each input image must have 
corresponding annotations (ground truth) to guide the iterative update of 
network parameters. Self-supervised and unsupervised training do not need 
any paired ground truth; they can learn to update network parameters by 

mining the endogenous features and correlations inside the input images. After 
convergence, pretrained models can be used to predict the result of unseen 
images. This is an illustrative example based on cell segmentation that also works 
for other tasks such as cell tracking and pose estimation.
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representative enough and cover a wide enough range of samples 
and imaging conditions. For intuitive comparison and ranking, the 
performance metric of each dataset should preferably be a number that 
can reflect comprehensive capability of a method. Efficiency must be 
emphasized for large-scale analysis to facilitate practical applications.

Interpretability and reliability. Despite the superior performance, 
deep learning in microscopy suffers from a trust crisis because of its 
black-box nature. It is a long-standing challenge to endow deep neural 
networks with interpretability. Realizing interpretable deep learning 
requires innovations in the most fundamental concepts. But some 
technical treatments such as feature visualization and physics-based 
modeling can improve the reliability to some extent21,24. The biggest 
concern of most researchers is potential artifacts in the results. It will 
help relieve the trust crisis if we have practical approaches to evaluate 
these errors quantitatively. For example, in addition to the results, 
trained models that provide the corresponding confidence levels at 
the same time would be advantageous.

General platforms. State-of-the-art image analysis methods are 
built on the latest advances in computer vision. Using these methods 
requires strong programming skills and professional background, 
which can be troublesome for biologists without computational 

expertise. The most successful platform for biological image analysis 
is Fiji, based on ImageJ25. There is an urgent demand for a new interac-
tive platform or updated Fiji to implement deep-learning-based image 
analysis. A good platform should not only enable the deployment of 
pretrained models26 but, more importantly, support the training of new 
models. These operations are all computationally demanding, so the 
platform must consider how to have easy access to local or cloud-based 
computing power27. Since most current deep-learning methods are 
based on Python, the new platform should be compatible with Python 
to make full use of open-source resources28.

Data sharing. The huge amount of data in biological imaging makes 
data sharing quite difficult. To facilitate sharing of large-scale data-
sets, first, web platforms supporting online preview and download of 
high-dimensional imaging data are needed. Second, high-efficiency, 
lossless compression should be applied to reduce the demands on 
transmission bandwidth and storage devices. Moreover, a new data for-
mat that divides original large-scale dataset into many units would be 
useful, as each unit would be independently available and meaningful. 
The metadata should include not only the basic description of datasets 
but also thumbnails. Users can then have a concrete understanding of 
the data without downloading the whole dataset.

New possibilities offered by emerging technologies
Recent research in artificial intelligence suggests that large language 
models (LLMs) can have human-level performance in language com-
prehension, reasoning and programming29. Among them, ChatGPT and 
multimodal GPT-4 have aroused wide attention owing to their ability 
to understand users and respond fluently on various topics. The great 
potential of LLMs provides the possibility to build a professional model 
to help us analyze imaging data (Fig. 2). This would be an artificial intel-
ligence engineer that can understand our needs and process the data 
automatically, such as writing custom scripts and training specific deep 
learning models. All we would need to do is to upload our data, enter 
our requirements in the dialog box and give some intermediate com-
ments, which effectively relieves the heavy burden of large-scale image 
analysis. However, there is still a long way to go to accumulate enough 
training examples and train such an intelligent and professional model. 
Open access to code and data of published papers is critical to realizing 
this long-term goal. Additionally, a widespread concern is that current 
LLMs sometimes give fictitious answers. Strict criteria and validations 
must be in place to ensure they are properly used in image analysis.

The growing demand for large-scale image analysis poses another 
great challenge to computing power. Conventional silicon proces-
sors can hardly satisfy the requirement for high-speed processing. 
Optical computing is an emerging technology that processes infor-
mation at the speed of light by using photons instead of electrons for 
computation30. Not only the inference of deep neural networks but 
also basic matrix operations could be implemented by integrated 
photonic circuits31. Combining image analysis with optical computing 
promises to improve the processing speed to a much higher level and 
enable data-heavy and high-throughput applications such as single-cell 
sequencing and image-based high-content screening.

Xinyang Li    , Yuanlong Zhang, Jiamin Wu      & Qionghai Dai     
Department of Automation, Tsinghua University, Beijing, China.  

 e-mail: wujiamin@tsinghua.edu.cn; qhdai@tsinghua.edu.cn

Published online: 11 July 2023

Results

Visualization

Raw data

Visualization

Command Feedback
DownloadUpload

Send

Graphical user interface

A large language model for bioimage analysis

Cloud-based computing platform

Fig. 2 | Using large language models for analyzing bioimaging data. A 
pretrained large language model is deployed on a cloud-based computing 
platform. Users can send commands and get results by communicating with the 
model through a dialog box.
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